Структура нуклеиновых кислот

Нуклеиновые кислоты обеспечивают разнообразные процессы хранения, реализации и воспроизведения генетической информации.

Нуклеиновые кислоты – это полимеры, мономерами которых являются нуклеотиды. Нуклеотид включает в себя азотистое основание, углевод пентозу и остаток фосфорной кислоты (рис. 1).

Азотистые основания нуклеотидов делятся на два типа: пиримидиновые (состоят из одного 6-членного кольца) и пуриновые (состоят из двух конденсированных 5– и 6-членных колец). Каждый атом углерода колец оснований имеет свой определенный номер. Каждый атом углерода пентозы также имеет свой номер, но с индексом штрих (‘). В нуклеотиде азотистое основание всегда присоединено к первому атому углерода пентозы.

Именно азотистые основания определяют уникальную структуру молекул ДНК и РНК. В нуклеиновых кислотах встречаются 5 основных видов азотистых оснований (пуриновые – аденин и гуанин, пиримидиновые – тимин, цитозин, урацил) и более 50 редких (нетипичных) оснований. Главные азотистые основания обозначаются их начальными буквами: А, Г, Т, Ц, У. Большинство нетипичных оснований специфичны для определенного типа клеток.

                      Рис. 1 – Структура нуклеотида

Формирование линейной полинуклеотидной цепочки происходит путем образования фосфодиэфирной связи пентозы одного нуклеотида с фосфатом другого. Пентозофосфатный остов состоит из (5’– 3′) – связей. Концевой нуклеотид на одном конце цепочки всегда имеет свободную 5′-группу, на другом – 3′-группу.

В природе встречаются два вида нуклеиновых кислот: ДНК и РНК. В прокариотических и эукариотических организмах генетические функции выполняют оба типа нуклеиновых кислот. Вирусы всегда содержат лишь один вид нуклеиновой кислоты.

Дезоксирибонуклеиновая кислота является местом хранения генетической информации организмов. Можно сказать, что это «самая главная молекула». Роль ДНК стала понятна после того, как Дж. Уотсон и Ф. Крик в 1953 г. предложили модель ее структуры и характер репликации. Согласно этой модели, молекула ДНК состоит из двух полинуклеотидных цепей, спирально закрученных одна относительно другой.

Открытие «двойной спирали» было одним из самых волнующих событий в истории биологии. Только через 5 лет были получены первые экспериментальные подтверждения модели в работах М. Мезельсона и Ф. Сталя. Началась эпоха невиданного прорыва в познании величайшей тайны природы – реализации наследственной информации. Началась эра молекулярной биологии. «Здесь, в Кембридже, произошло, может быть, самое выдающееся после выхода книги Ч. Дарвина событие в биологии – Уотсон и Крик раскрыли структуру гена!» – писал тогда Н. Бору (1885–1962) его ученик М. Дельбрюк.

В составе нуклеотидов ДНК встречаются 4 типа основных азотистых оснований:

А – аденин;

Т – тимин;

Г – гуанин;

Ц – цитозин.

Углевод нуклеотида ДНК – дезоксирибоза (С5Н10О4).

Две полинуклеотидные цепочки объединяются в единую молекулу ДНК при помощи водородных связей между азотистыми основаниями нуклеотидов разных цепей. Соединены азотистые основания по принципу комплементарности:

Принцип комплементарности – это одна из фундаментальных закономерностей природы, определяющая механизм передачи наследственной информации.

Между аденином и тимином две, а между цитозином и гуанином три водородные связи, что часто отражается при написании комплементарности взаимодействий: А=Т, Г=Ц.

Полинуклеотидные цепочки одной молекулы являются антипараллельными, т. е. против З’-конца одной цепочки всегда находится 5′-конец другой цепочки.

Хотя в молекуле ДНК всего 4 типа нуклеотидов, благодаря их различной последовательности и огромному количеству в полинуклеотидной цепочке, достигается невероятное разнообразие молекул ДНК. В зависимости от видовой принадлежности организма варьирует соотношение АТ/ГЦ нуклеотидов ДНК (у человека это соотношение составляет 1,52).

Столь гигантских полимеров, как ДНК, не выявлено больше ни в природе, ни среди искусственно синтезированных химических соединений. Длина молекулы ДНК первой хромосомы человека (самой крупной в наборе) достигает почти 8 см. Общая длина всех молекул ДНК клетки человека – около двух метров, а у саламандры почти в 30 раз больше.

Рибонуклеиновая кислота имеет множество разновидностей, но все ее молекулы построены по общим структурным принципам. Они состоят из одной полинуклеотидной цепочки, значительно более короткой, чем цепочка ДНК. В нуклеотидах РНК имеются 4 типа азотистых оснований: А, Г, Ц, У (урацил). РНК чаще, чем ДНК, содержит нетипичные нуклеотиды, которые обычно модифицируют ее функции. Углевод РНК – рибоза (С5Н10О5). Рассмотрим основные виды РНК в клетке.

Информационная (матричная) РНК – и-РНК (м-РНК). Содержит от нескольких сотен до десятков тысяч нуклеотидов. Молекула и-РНК представляет собой незамкнутую цепочку. Она переносит информацию о структуре белка с ДНК на рибосомы – место непосредственного синтеза полипептидной цепочки. У эукариот каждый белок клетки обычно кодируется отдельной молекулой и-РНК. У прокариот все гены одного оперона переписываются на одну общую молекулу и-РНК.

Рибосомальная РНК – р-РНК. Входит в состав рибосом. Помимо структурной функции, принимает непосредственное участие в синтезе полипептидной цепочки. Составляет 85 % всей РНК клетки. Прокариоты содержат 3 вида р-РНК, а эукариоты – 4 вида, весьма различных по размеру. Молекулы р-РНК и белков в субъединицах рибосом взаимодействуют упорядоченным образом.

Транспортная РНК – т-РНК. Переносит аминокислоты к месту синтеза белков на рибосомы. Каждая молекула т-РНК содержит немногим более 80 нуклеотидов. Специфичность т-РНК определяется структурой антикодона, т. е. участка соединения с определенным триплетом нуклеотидов и-РНК. Каждый антикодон определяет способность связываться с определенной аминокислотой на другом конце т-РНК. Эта способность зависит от активирующих ферментов, которые «узнают» соответствующие друг другу аминокислоты и т-РНК.

Гетерогенная ядерная РНК – гя-РНК. Является предшественником и-РНК у эукариот и превращается в и-РНК в результате сложных преобразований, которые будут рассмотрены в дальнейшем. Обычно гя-РНК значительно длиннее и-РНК.

Малая ядерная РНК – мя-РНК. Принимает участие в процессе преобразования гя-РНК.

РНК-праймер – крошечная РНК (обычно 10 нуклеотидов), участвующая в процессе репликации ДНК.

Для эволюционной биологии огромное значение имело выявление специфической каталитической активности некоторых РНК. Этот факт заставил многих ученых рассматривать РНК как «первомолекулу» в теориях происхождения жизни.

Нуклеиновые кислоты (ДНК и РНК) имеют характеристики первичной, вторичной и третичной структуры.

Первичная структура – последовательность нуклеотидов в полинуклеотидной цепочке.

Вторичная структура – порядок укладки полинуклеотидной нити.

Для ДНК вторичная структура – это двойная спираль нуклеотидных нитей. Существует несколько видов спиралей ДНК. Наиболее часто встречается правозакрученная спираль В-формы. Обнаружены участки ДНК, имеющие другую конфигурацию, как правозакрученную (А– и С-формы), так и левозакрученную (Z-форма).

РНК формирует вторичную конфигурацию за счет комплементарного соединения отдельных участков своей цепочки. Наиболее специфическую вторичную структуру имеет т-РНК (форма «клеверного листа»). Центральная петля молекулы т-РНК содержит антикодон. Очень сложную конфигурацию имеет вторичная структура р-РНК.

Третичная структура – различные виды компактизации молекулы нуклеиновой кислоты. В структуре ДНК это явление получило название суперспирализация. Третичная структура т-РНК похожа на букву «Г». Она меняется в зависимости от рН среды и других факторов. Особый случай представляет кольцевая ДНК (у бактерий, в митохондриях, в пластидах), образованная ковалентным соединением концов молекулы ДНК.

Узнай цену консультации

"Да забей ты на эти дипломы и экзамены!” (дворник Кузьмич)