- Услуги
- Цена и срок
- О компании
- Контакты
- Способы оплаты
- Гарантии
- Отзывы
- Вакансии
- Блог
- Справочник
- Заказать консультацию
Электромагнитные, электродинамические, ферродинамические и электростатические измерительные механизмы могут быть использованы для измерений действующих значений переменного тока и напряжения.
Расширение пределов измерений по току перечисленных измерительных механизмов осуществляется с помощью измерительных трансформаторов тока, так как падение напряжения в этих механизмах в несколько раз больше, чем в магнитоэлектрических, поэтому шунты получились громоздкими и дорогими.
Расширение пределов измерения по напряжению может быть достигнуто как с помощью добавочных сопротивлений, так и путем использования измерительных трансформаторов напряжения. Последние главным образом применяются при необходимости изоляции прибора от сети высокого напряжения. Расширение пределов измерения электростатических измерительных механизмов производится с помощью добавочных конденсаторов.
Электромагнитные приборы в основном применяются в качестве щитовых приборов класса 1,5, а также лабораторных многопредельных приборов класса 0,5.
Элек тродинамические амперметры и вольтметры являются наиболее точными приборами на переменном токе. Они выпускаются только в качестве лабораторных приборов классов 0,1; 0,2 и 0,5.
Электромагнитные, электродинамические и ферродинамические приборы обычно градуируются (и поверяются) либо на переменном токе промышленной частоты, либо на постоянном токе. При измерении на повышенных частотах эти приборы имеют значительную погрешность, обусловленную в основном индуктивностью катушек. Для работы на высоких частотах указанные приборы не могут быть использованы.
На практике электростатические вольтметры могут быть использованы на любых частотах, за исключением малых частот (до 30 … 40 Гц), так как при малых частотах полное сопротивление Z измерительного механизма и добавочного конденсатора зависит от сопротивления изоляции, шунтирующего емкостное сопротивление.
Для измерения действующих значений переменных токов и напряжений также могут быть использованы термоэлектрические приборы. Схемы цепи термоэлектрических приборов приведены на рис. 8.3.
Термоэлектрический прибор представляет собой магнитоэлектрический измерительный механизм Г (см. рис. 8.3, а, с единичной термопарой) в сочетании с термопарой 1, служащей для измерения температуры t проволоки (термосопротивления) 2, через которую протекает измеряемый переменный ток I. Угол отклонения магнитоэлектрического измерительного механизма пропорционален термоЭДС Si, т. е.
Характеристика шкалы не будет строго квадратичной, так как температура t терморезистора определяется тепловым равновесием проволоки, т. е. потерями выделяемой теплоты, зависящими от многих факторов.
Если измеряемый ток мал, то мало и значение термоЭДС. В этом случае можно использовать батарею из нескольких термопар (см. рис. 8.3, б). Однако непосредственный контакт рабочих концов термопар с терморезистором невозможен, ибо термопары оказались бы замкнутыми накоротко. Поэтому рабочие концы термопар обычно изолируются от терморезисторов каплей стекла.
Терморезистор часто называют нагревателем, а сочетание нагревателя с термопарой — термопреобразователем. Терморезистор (нагреватель) обычно выполняется из константана или сплава платины с родием. В качестве термопары чаще всего применяется термопара хромелькопель. Индуктивность терморезистора очень незначительна, поэтому основное применение термоэлектрические приборы получили для измерения токов высокой частоты (в мегагерцах — МГц).